IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

2007

Maestro: a remote execution tool for visualization
clusters

Aron Lee Bierbaum
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
b Part of the Computer Sciences Commons

Recommended Citation

Bierbaum, Aron Lee, "Maestro: a remote execution tool for visualization clusters” (2007). Retrospective Theses and Dissertations. 1463S5.

https://lib.dr.iastate.edu/rtd /14635

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital

Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F14635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/14635?utm_source=lib.dr.iastate.edu%2Frtd%2F14635&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Maestro: A remote execution tool for visualization clustes

by

Aron Lee Bierbaum

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Carolina Cruz-Neira, Major Professor
Julie Dickerson
Chris Harding

lowa State University
Ames, lowa

2007

www.manharaa.com

UMI Number: 1447485

®

UMI

UMI Microform 1447485

Copyright 2008 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M| 48106-1346

www.manharaa.com

TABLE OF CONTENTS

LIST OF FIGURES
ACKNOWLEDGEMENTS
ABSTRACT

1. INTRODUCTION

Research Problem

Statement of Purpose L L Lo

Scope of Research
Define the Requirements for a Remote Execution Tool
Analyze Existing Remote Execution Tools

Design Maestro Based on the Defined Requirements

Develop the Initial Implementation

Perform Iterative Refinement of the Design

DiscussResults

Thesis Organization

2. BACKGROUND

Virtual Environment

Immersive Visualization Clusters

3. REQUIREMENTS

Security e

Cross Platform

W W W w N NN DN

www.manharaa.com

Complete Control of Execution Environment 8
Custom GUI for Application Execution e 8
Screen Saver Management e e e 9
4. EXISTING CLUSTER EXECUTIONTOOLS 10
PsSTools 10
Description 10
Strengths e 11
Limitations 11
RexeC/SSH 11
Description e 11
Strengths 21
Limitations e 12
Parallel Program Trees e e 12
Description e 12
Strengths 31
Limitations 13
REMOTE++ o e 13
Description 13
Strengths L e e 41
Limitations 14
5. ARCHITECTUREOF MAESTRO i 15
Software Library Structure e e e 15
Core COMPONENtS e e e 16
Network Communication 16
Client GUI 17
Plug-in Management 17
Configuration e 17

www.manharaa.com

6. MAESTROINDETAIL e e e e e e e 19
Network Communication e e 19
Authentication e 20
Cluster Configuration e 21
Application Configuration e 22

Command 23
CWD . . e e 23
Environment Variable e 23
Environment List 24
Argument L e 24
ChoiCe o 24
Group 25
Reference 52
Override 52
AddOptions e e 52
Remove Option e 52
GUIComponents e e 26
Launch View 26
Reboot View 27
Process VIew 8 2
Resource View 9 2
Desktop VIEW e 03
Ensemble View 13
Stanza Editor 31

7. DISCUSSION e e 34
Event System e e e 34
Stanza Reference Option e 34
Automated Logon L e e 35

www.manharaa.com

LogonDesktop e 35
8. CONCLUSIONS 36
9. FUTUREWORK e e e e 38
BIBLIOGRAPHY e 39

www.manharaa.com

Vi

LIST OF FIGURES

Figure 5.1 Maestro Components e e e 16
Figure 6.1 EventPropagation e 19
Figure 6.2 Example Ensemble File 22
Figure 6.3 Example StanzaFile 23
Figure 6.4 LaunchView 27
Figure 6.5 RebootView e 28
Figure 6.6 ProcessView e 29
Figure 6.7 Resource View e 30
Figure 6.8 Desktop View 31
Figure 6.9 Ensemble View e 32
Figure 6.10 StanzaEditor e 33

www.manharaa.com

Vii

ACKNOWLEDGEMENTS

| would like to thank Dr. Carolina Cruz-Neria for her contaal support throughout my college
career. She has provided me with more opportunities tharuldcever ask for. | would also like
to thank my colleagues and friends Allen and Patrick. Theyehaught me more about software
engineering than any book could. They have also providegbatdd feedback and support throughout
this research.

Finally, I would also like to thank my fiancée Lindsay for hapgport through this process. She has

helped me in more ways than | can count, and | can’t wait to ¢plee rest of my life with her.

www.manharaa.com

viii

ABSTRACT

In recent years immersive visualization systems have itraned from running on large shared
memory systems to clusters of commodity PCs. While therebkeas much research done to create
middleware to manage application synchronization, theeldeen very little work done to allow easy
execution of immersive applications on a cluster. Althotiggre are existing remote execution tools,
they are targeted at high performance computing (HPC) atelmise administration. This thesis
presents Maestro, a cross-platform remote execution esibded specifically for visualization clus-
ters. The goals of Maestro, a description of its design, adetailed discussion of its implementation
are provided. The design description gives explanationthethree components of Maestro: the core
that handles networking and security, the user interfaaé ¢bntrols the cluster, and the daemon on
each cluster node. Maestro has been successfully deployadroerous large visualization clusters,

which have led to refinements and improvements to the tool.

www.manaraa.com

1. INTRODUCTION

Research Problem

With the increasing performance of commodity hardware aligation systems have started shift-
ing to clusters of PCs rather than large shared memory sgstéhere has been considerable research
done to create middleware that allows these applicatiobg ®ynchronized across these clusters. This
research has continually skipped over the significant ssfi@xecuting these applications on the re-
mote cluster nodes.

There are existing tools that allow a user to launch an agiidic on remote nodes. But these tools
do not address the specific needs of a clustered virtuaty€®lR) application. There are two different
sets of existing tools. The first is composed of adminisiratdols that are designed to allow a system
administrator to run applications on any individual nodElse second group addresses the needs of job
scheduling on computation clusters. Tools from both grawiide discussed in more detail in Chapter
4,

Users of graphics clusters should not have to sacrifice thelgity of launching an application
from the master node of the cluster. Rather than writingamsscripts and using remote shells to
launch an interactive, immersive application users shbel@dble to launch applications across all the
nodes of a cluster in a simple, uniform manner. We believettieacurrent remote execution tools do
not address the specific needs of launching a clustered VIRaippn. The need for a better tool is the

driving force behind this research.

www.manaraa.com

Statement of Purpose

The research presented here begins by specifying the fustahrequirements for any remote ex-
ecution tool that can be used on a visualization clustemdygiese requirements as the basis for com-
parison, we will analyze existing remote execution toolgpbkasizing their strengths and limitations.
The results of this analysis will be used to define the needstobl that can be used to effectively
execute remote commands on a visualization cluster. This ¢alled Maestro, is the focus of the
work presented in this document. Maestro is a cross-plattool that allows execution of applications

across a visualization cluster.

Scope of Research

To meet the research goals proposed in the statement of ggyrloe work is structured in the

following stages:

1. Define the requirements for a remote execution tool.
2. Analyze existing remote execution tools.

3. Design Maestro based on the defined requirements.
4. Develop the initial implementation.

5. Perform iterative refinement of the design

6. Discuss results.

Each of these steps is described in detail in the followirgseations.

Define the Requirements for a Remote Execution Tool

Before researching any existing remote execution toosgthals and requirements of the Maestro
project had to be defined. By doing this first it simplified tlvalaation of existing tools because key
criteria could be used to determine the usefulness of eawh hese requirements have also been

usefubinjidentifying,deficiencies in various iterationsdavelopment and stating goals for future work.

www.manaraa.com

Analyze Existing Remote Execution Tools

Existing remote execution tools were investigated to deitee if any one met the requirements of
this research. The goal was to ensure that work was not bepeated and to define that contributions
Maestro could make to the field. This stage of the researgbetein designing Maestro because

features offered by other tools could be included with thaféered by Maestro.

Design Maestro Based on the Defined Requirements

Upon reviewing existing tools, we feel that our plan to ceeatnew Remote Execution tool is
justified. No other implementation offers the exact featsgewe want. While there are many tools
that address remote execution on computation clusterg aendesigned specifically for visualization
clusters. The design of Maestro was refined based on whatouasd in existing tools, but the primary

goals remain the same.

Develop the Initial Implementation

A simplified initial implementation was written and tested a visualization cluster. The initial
work did not meet all of our goals and had problems that ne¢aled overcome. The first pass proved

to be slow and hard to use, and therefore required many additdevelopment iterations.

Perform Iterative Refinement of the Design

The design of Maestro has been refined continuously basedwloper ideas, user feedback,
and further research into new remote execution tools. Nadss been demonstrated and installed
on several large visualization clusters and input from si$&xs been taken into consideration during
development iterations. The initial design has been exend allow complex authentication, better

error handling, and complex application launching configions.

Discuss Results

The results of using Maestro on large visualization clisssiiow that while Maestro is a very useful

tool there are still problems. These problems have beem take consideration for future iterations of

www.manaraa.com

the development cycle.

Thesis Organization
The remainder of this text is organized as follows:

» Background information for remote execution and viswalan cluster is provided in Chapter 2.
» Requirements for a remote execution tool are presentedhapt@r 3.

» Previous remote execution tools are discussed in Chapter 4

A high-level description of Maestro’s architecture isgivin Chapter 5.

The details of the architecture are presented in Chapter 6.

www.manharaa.com

2. BACKGROUND

In this chapter we will describe some fundamental concepds meed to be understood before
describing Maestro in detail. We will start with an overviefwirtual reality and its current uses. Then
we will describe the shift away from large shared memory eayst towards clusters of commodity

machines used to generate these virtual environments.

Virtual Environment

A “virtual environment” is defined by Stuart as:

“Systems capable of producing an interactive immersivetisaiisory 3-D synthetic
environment” it uses position-tracking and real-time updaf visual, auditory, and other
displays (e.g., tactical) in response to the user’s motiomgve the users a sense being ’in’

the environment, and it could be either a single or multirsystem.” [21]

The above definition points out several key components t&Riexperience. First, a virtual environ-
ment must respond to user input through some set of hardveaieas$. Second, the user is immersed
in the application such that their attention is focused angbnsory elements in the space. Finally,
the environment is rendered in real time by the hardwareemgisponding to the users actions at any
given time. This is much different than pre-recorded aniomst. The combination of these components
results in a VR application that is centered on the user.

Immersive virtual environments allow users to view, natégand/or modify three-dimensional
models with a first person perspective. The type of immersidmeved in these graphical systems
allow users to behave in the 3D virtual scene the same wawtloeyd behave in a real environment.

Immersive visualization (V) systems are currently usedifferent applications such as scientific data

www.manaraa.com

visualization (metabolic networks [6], fluid dynamics [2&formation flows [14]), e-learning [9],

collaborative design [7, 15] and computer games [13].

Immersive Visualization Clusters

Traditionally immersive visualization systems have beesighed on dedicated, high-end, shared
memory computers to generate interactive virtual envirents. In recent years, this almost exclusive
use of high-end computers for these purposes has shiftedntonodity hardware. This is mainly
because using commodity hardware has become a low-costaite [5, 12, 20]. Continuous, rapid
improvements in commodity hardware have allowed desigakismersive visualization systems to
employ high-quality graphics hardware, high-speed premes and significant amounts of memory
with much lower costs than would be possible with high-eh@red memory computers.

Graphics clusters pose unique challenges. Most obviotisysoftware run on graphics clusters is
normally interactive. Users provide live input in order mesimmediate results. Each node normally
has one or more display devices (monitor or projector) coteteto it. Furthermore, the processes
running on each node normally work in concert to produce velpatears to be a unified image rather
than, say, each node working autonomously to compute a gradlbf a large problem. Thus, users
of a graphics cluster are actively using all the nodes of thster simultaneously. This is in contrast
to a computational cluster where a user sits down at the mastie and starts up a computationally

expensive job and then leaves the computers to run until trk eompletes.

www.manaraa.com

3. REQUIREMENTS

In this chapter we present the components that make up thienomim requirements for a remote
execution tool specifically designed for immersive viszadiion clusters. These components reflect
our experience researching and evaluating existing remeution tools, developing Maestro, and

deploying Maestro on large clusters. The components predeme as follows:

security

cross platform support

interactive remote desktop

complete control of execution environment

custom GUI for application execution

screen saver management

Details for each of these components are given below.

Security

In order to execute an application on a remote machine, aniost address a few security issues.
First, the user must be able to authenticate with the remade.nThis allows the software to ensure
that the user has the correct rights to run the applicatiothercluster. Also authentication allows the
remote application to access the user's secure files. Oncaueaessfully launch an application we
also need to ensure that all network traffic is encrypted. [&Vdicluster is often located on an isolated
network, it is still important to guarantee that an un-teasindividual could not get access to potentially

classified information.

www.manaraa.com

Cross Platform

Most existing remote execution tools are designed to run MiXbased systems, with the excep-
tion of a few tools that have been ported to work on Windows®esge tools are limited because they
are not designed to run on multiple platforms. A useful resmetecution tool must allow the user to
switch between platforms transparently. For example, iinigortant that a user can remotely execute
an application on a cluster of nodes running Linux while gsarclient Graphical User Interface(GUI)

on their Windows laptop.

Interactive Remote Desktop

The main difference between an immersive application amcthabconsole application is that it
needs to be able to open a graphics window on each cluster hodeder to open this window, the
application must be able to interact with the current dgskithis requires the remote execution tool to
grant the remote process additional access rights. Thahaelld allow an authenticated user to launch

an interactive application without being logged into ealkister node.

Complete Control of Execution Environment

The remote execution tool should not require any changdsetapplication being executed. Since
applications can receive input in many different ways ther ghould be able to control the complete
execution environment. Users should be able to specify dhntand to execute, the current working
directory, environment variables, and command line argumeThis information should be captured
in a reusable application configuration file. In the past siteve addressed this issue by using cus-
tom scripts that set up the correct environment for eachieatfbn. We believe that this process is

cumbersome and error prone.

Custom GUI for Application Execution

Most applications can be executed in different ways depgndin their execution environment

and command line arguments. We feel that it is the remoteutiectool’s responsibility to capture

www.manaraa.com

these options and present them to the user in a meaningful R@yexample, if an application can
be launched full screen by specifying -f, the user should tesgnted with this option. Also if an
application takes an input file the tool should allow the usechoose a file before executing the

application. The goal is to present the user with an inteitixay to launch an application on the cluster.

Screen Saver Management

The purpose of a screen saver is to prevent damage to a mtratas displaying the same image
for long periods of time. Normally a screen saver changegsstlisplaying this image after a certain
amount of time without user interaction. A problem occursewtrunning an application across a
cluster because the user is not using the keyboard or mousaabiremote node. We feel that a remote
execution tool should allow the user to manage the screesr sattings on each node in the cluster.

This would allow the user to disable screen savers whileingnan application.

www.manaraa.com

10

4. EXISTING CLUSTER EXECUTION TOOLS

PsTools

Description

One of the few remote execution tools that exist for MicroadMindows® is a package called
PsTools. This package is a collection of command line igtdifor remote execution and system ad-
ministration. The first utility, PsInfo is used to gain gesdénformation about a given machine on your
network. This general information includes computer namejer, processor speed, physical memory
size, and hard disk configuration. Next, PsList is used tadst of all processes running on a given
machine. The user can query process details which includeark not limited to, start time, priority,
number of threads, memory usage, and CPU usage. PsKill imsitm the UNIX kill command. It
can terminate processes on remote machines by name or pi@zeSince it can also be desirable to
suspend a process that is consuming a resource, PsToosnsoRsSuspend which only suspends a
process to be resumed later. The user can also use the PeS8huitllity to reboot or shutdown a
remote machine.

Remote execution is accomplished using a utility calledxesE This utility allows the user to
launch a command on a remote machine. Unlike other Microsfdows® based solutions, PsExec
allows the user to launch interactive applications and stppuser authentication. This is all accom-
plished using the administrative shared ($C) to executegiimote command and tunnel all application

output back to the user’s terminal

www.manaraa.com

11

Strengths

PsTools is the most powerful and flexible remote executian tieat we found that had native
support for Windows®. It supports many of the requiremergsatibed in Chapter 3. It supports
user authentication by passing a username and passworde aotfimand line. Since PsExec takes
advantage of existing features it has the added benefit afnoiring any installation on the client or

server.

Limitations

PsTools was designed for network administration, not renexiecution. It does not support the
concept of a cluster of nodes. This means that the user wadd to write custom scripts that would
run their application on each node in the cluster. PsToals dbes not meet our requirement of being
cross platform. Also, during testing we encountered pnoisievith user authentication. PsTools is a

very powerful tool that unfortunately was not designed vaitht specific needs in mind.

Rexec/SSH

Description

Many UNIX based clusters address the problem of remote d¢ecusing custom scripts and
features of RSH and SSH which allow launching a remote psof8].This method is fairly straight
forward since all needed tools are included with standardXJ#listributions. It is simple to run a
single remote command using these tools. It becomes muahdiféicult when a user needs to manage
connections to a large number of machines. Since we needrtola process on each node in parallel,
this solution would need to open a terminal window for eactienior the cluster in order to show results
of the operation. This solution does not scale well with therent increase in visualization cluster
size. Also, using scripts tends to break down quickly beedahsy are home grown custom solutions

that don’t take into account future needs.

www.manaraa.com

12

Strengths

Much like PsTools, this method usually works correctly with any user intervention. Once the
daemon is installed and started on a server, any client wélcorrect credentials can execute a com-
mand. Also using SSH has the benefit of using encrypted nktiraffic. This can be very important
if the user is running a confidential application on the @usind needs to protect the data being trans-

ferred.

Limitations

This solution is very popular but it does not address manyusfrequirements. Once again the
major problem with this method is that it has very limited pag on Windows®. There are a few SSH
servers that exist for Windows®, but they lack integratethantication and desktop interaction. This
solution also requires the user to write custom applicatiependent scripts that become very error
prone.

User authentication is supported, but requires the usakiane of three actions. First, they could
type their password once for each node. This will quicklydmee an annoyance when using a large
cluster. Next, the user could include their password in thenth scripts. Storing your password in
plain text is very insecure and should be avoided at all cosesst the user could set up SSH keys
to allow access without passwords. Setting this up cogreetijuires the user to complete a lengthy

process and run a SSH agent before launching the application

Parallel Program Trees

Description

There has been work done within the Apache group to find a siniplt efficient solution that
builds upon features of RSH and SSH. This approach diffetedhthe controlling machine does not
make a connection to each node in the cluster. Instead itotsito some k number of nodes and tells
them to start the process. These nodes at the first level tihrerect to k more nodes and inform them

to start the process. As you can see this forms a tree steuofurCP connections.

www.manaraa.com

13

Strengths

The parallel program trees method was successful in déngettsee amount of time that it takes to

launch a process by more than an order of magnitude [16].

Limitations

Although this remote execution method is much more efficieah SSH, it still suffers from the
same limitations. It was designed specifically to executesole applications on large computation

clusters. It does not address any of our high level requirgsiguch as screen saver management.

REMOTE++

Description

Another solution that exists for the Windows® operatingteys is Remote++ [11], which was
developed as a replacement for REMOTE. Both tools are dedigpecifically for applications that
require multiple runs to complete a single task. Time paliakition allows the application to be run
on multiple machines at the same time with different inputiea to reduce the overall execution time
of the simulation. Parallel Independent Replications RIRes time parallelization by distributing
the executable with different input values to a set of nodédike its predecessor, REMOTE++ uses
standard remote shell (rsh) and remote copy (rcp) commands.

There are a few requirements in order to be able to run anagijgn on remote nodes. First, all
remote nodes must be running rsh and rcp daemons. Also, teermmede needs to have a joblist.txt
file containing a list of executables with their respectivput and output files. Finally, the master node
needs to have a file named hostlist.txt that lists all avidlabdes.

In order to run an application on each node the user runs egpathich loads the list of jobs and
remote nodes. First, each job is matched up with an avaitedide. Next, the executable and input files
are copied to the node using rcp and the application is egdaging rsh. Finally, after the application

completes the output file is copied back to the master node.

www.manaraa.com

14

Strengths

REMOTE++ is one of the few tools that exist to execute apptica remotely on Windows®.
REMOTE++ also uses standard and well tested tools to acdshmifs goal of remote execution. Since

it uses these standard rcp and rsh it appears very familidNiX users.

Limitations

REMOTE++ was designed specifically for PIR applicationg tha on Windows. While it does a
good job of addressing it's goals, it does not meet many ofreguirements. It is not cross platform
even though it uses standard commands that are found on UtAKO0 does not provide an easy way
to manage the applications to execute on the remote macfiihegarget application is also limited to
taking one input file and getting one output file. This doesauuiress our requirement of being able to

specify the complete execution environment for each nodedrcluster.

www.manaraa.com

15

5. ARCHITECTURE OF MAESTRO

After reviewing the existing solutions described in theviwas chapter, we felt that it was neces-
sary to design a new remote execution system specificatigtied at immersive visualization clusters.
Most existing systems are designed for either high perfasaacomputing (HPC) clusters or large-
scale corporate network administration. Designing a systéth the needs for cluster of commodity
hardware running a virtual reality system will result in amaaiseful and robust system.

To overcome these limitations, Maestro was designed wéHdhowing goals in mind:

Cross platform

Separation of cluster configuration and application camfigion

Highly extensible

Secure authentication methods

Easy installation and configuration

The following sections describe the high level system cptecand the motivation behind the system

design. The detailed design description is in the follondhgpter.

Software Library Structure

Maestro is separated into three different modules, Figutethe core library, the server side dae-
mon, and the client side graphical user interface (GUI). @tre library contains event handling, user
preferences, error handling, user authentication, ang-mlumanagement. The daemon module con-

tains a platform independent server that provides an atistigw of the local cluster node. Finally, the

www.manaraa.com

16

GUI module contains a client that provides an overview ofahtire cluster by aggregating information

from each node’s daemon.

Maestro GUI maastrod

Core
{event system and plug-Hn management)

Figure 5.1 Maestro Components

We chose to write Maestro is in Python for two main reason firkt is that it allows us to easily
accomplish our goal of having a cross platform system. Ryttrovides us with an abstraction layer
that allows us to ignore the low level platform independssties such as networking and endianness.
The second reason is that Python is a scripting language @aslribt require any compile time. This

allows us to do rapid prototyping and have shorter develayriterations.

Core Components

Network Communication

When initially designing Maestro we needed to decide onwaédng abstraction layer that would
allow cross platform development. We also decided that wadt want to implement our own network
protocol. Instead, we decided to use an existing Remote ddetfivocation (RMI) framework. This
allowed us to concentrate on making a useful tool rather thigplementing a network protocol. The
first version of Maestro used a rather simple RMI toolkit, ®}&]. After a few months of development
we found Pyro did not meet our needs because it was not desfgnasynchronous connections. We
then chose to use Twisted’s RMI module, ProspectiveBraRe) (8]. PB provided us with everything

that we needed, including secure connections over SSL.

www.manaraa.com

17

Client GUI

After reviewing many different GUI toolkits we chose Qt [3]rfmany reasons. First, the Python
bindings, PyQt [1], are very complete and well tested. Algts €ignal and slot mechanism fits very
well with our own event system. Last, using Qt Designer we wamage the look and layout of the

GUI separate from the application logic layer.

Plug-in Management

One of the main goals of Maestro was to allow users to eastigneixthe core functionality. We
accomplished this by designing Maestro to use a sophietigalg-in system that automatically finds
and loads plug-ins at start up [22]. In order to extend Maestuser only has to implement one of the
plug-in interfaces and place their module in a location Maestro can find it. Maestro then loads the

plug-in at the appropriate time and attaches it to the costesy.

Configuration

Another goal of Maestro is to separate the application cardigon from the cluster configuration.
This is accomplished by storing all cluster information insEmble files and all application specific
configurations in Stanza files. The idea being that an Ensemsbh group of nodes much like an
orchestra and a stanza contains application instructiarshrtike a musical score.

An Ensemble configuration file is a list of cluster node eletsewhich contain the name, host
name, and class of each node. The class attribute allowsstretal break up a cluster into smaller
groups. In turn this allows Maestro to launch the applicatitightly different on each smaller group
of nodes. This is most commonly needed for applicationsubata client/server network topology and
need to run a different executable or pass extra argumetite erver node.

The Stanza file contains all information needed in order tmd¢h an application on a cluster.
This allows the Stanza files to be easily distributable wighvrapplications. It is important to keep
in mind that Stanza files are not meant to specify a staticfsgptions used to launch an application.
Instead they are meant to store how an application is lauhahe all of the different launching options.

Maestro then uses this information to present the user witistom interface that allows them to select

www.manaraa.com

18

how to launch the application. For example, you could spebié command and a list of possible data
files to load. When launching the application the user is firesented with this predefined list of data
files to choose from while launching. More details about afifcguration options and how they effect

the GUI will be discussed in Chapter 6.

www.manharaa.com

19

6. MAESTRO IN DETAIL

Building on the background given in the previous chapter wes present the implementation
details of Maestro. We will begin by describing the netwodkmnunication between the client GUI
and the cluster nodes. The authentication system arahitect then discussed in detail. Next, the
details of cluster and application configuration are exm@di Finally, the chapter concludes with a

description of the Maestro GUI components.

Network Communication

As described in the previous chapter, when designing Maesatrdecided to use an existing Remote
Method Invocation (RMI) framework instead of implementiogr own network protocol. We wanted
to design a network communication layer that was dynamiceasy to extend. In order to achieve this
goal we modeled the communication after the Observer Pit®]. This allows the Maestro GUI to

register callbacks to receive generic events when a clustde’s state changes.

Maestro maestrod Process
Client GUI
Resource Event Ewvent . Resource
" ——FEmit Events—m M |—Emit Events— .
View il Evers Manager Manager i Even Service
[—Python Callbacks— —Python Callbacksm

Figure 6.1 Event Propagation

Both the Maestro GUI client and the maestrod server havevamt Manager that handles emit-
ting events to the correct remote node and routing incomirents to the correct python callback.
When the Maestro client GUI connects to a cluster node, Eigul, it uses RMI to register it's
Event Manager to receive events from the server. During this process thees@lso registers its

EventManagerstogeceive,events from the client GUI. This allows eventsasgback and forth be-

www.manaraa.com

20

tween the Maestro client GUI and the cluster nodes tranapgrd he routing of theses events depends
on a destination host name. If an event should be sent touslierl nodes the event's destination is set
to ™.

Maestro plug-ins emit events and register callbacks widirttocal Event Manager object. A
plug-in can emit a signal by specifying a destination hosh@aan event id string, and a list of ar-
guments. The plug-in can also register callbacks to rearemts with a specific event id string. For
example, the Resource View can register to receive 'settipyl_usage’ events whenever a cluster node
reports it's current CPU usage. It can then emit a 'settoggfscpu_usage’ event to all cluster nodes.
When maestrod receives this event it will get the current epage and emit a 'settings.cpu_usage’
event with the corresponding data. The Resource View thegives this event and updates it's display

to show the current usage.

Authentication

User authentication is an important requirement for a rengaecution tool. It is very important
for Maestro to handle authentication correctly becausedttads a service that executes code and
commands on behalf of users. Authentication is the first @lidishe connection process between the
Maestro GUI and maestrod, the Maestro daemon. If authdioticdails then the GUI user cannot
perform any actions on the server side, even those that detmgity require authentication.

Authenticating users proved to be a difficult task becaugbefarge differences in authentication
on different operating systems. In order to address thfgcdify, Maestro uses a plug-in architecture.
For each authentication method there is a client side piugad server side plug-in that handle their
authentication independently of the other methods. Belegvlist the current set of authentication

plug-ins:

» User Name and Password:This authentication method is supported on all platfornms| ia-
cludes support for domains on Microsoft Windows®. The impdmtation of this plug-in for non-
Windows® plug-ins currently relies upon PAM [19]. For Wingle®, the win32security.LogonUser()

function is called with the given user name, password, amdaiio to get a user handle.

www.manaraa.com

21

 Active Directory: Domain-level authentication using Kerberos 5. Direct usAaiive Direc-
tory for authentication via credentials forwarding is d&bie only on Microsoft Windows®.
Other platforms may be configured to use Active Directorydothentication behind the scenes
(through PAM, for example). For nodes that are trusted foeghgion, users can forward their

existing credentials to the Maestro service and never faeater their user name or password.

* NT LAN Manager (NTLM): Basic Windows® challenge/response authentication. Bhisiy
supported for Windows® clients and servers. The use of NTlokthis supports single-hop
credentials forwarding, meaning that a user can autheatiegh the Maestro service on a remote

node but cannot access remote resources from that remate nod

The authentication process is broken into a two-phase psocEhe first phase is negotiating a list of
authentication methods that the client GUI and maestrogatip The second phase iterates through

the list of authentication plug-ins trying each one to sgsbdly authenticate.

Cluster Configuration

Ensembile files list all nodes that are in a particular clugiershown in 6.2 the file structure is very
simple. Each node has three attributes, class, host nagheaame. The class is a comma-separated list
of identifiers indicating the role of the node in the clustehich comes into play with the stanzas and
application launching. For example, a node could be putanmtaster or slave class. By default, every
node in the ensemble has its operating system name as p#statdiss, so this need not (and should
not) be specified in the ensemble file. The host name is thedRessl or machine name for the node.
This is what the Maestro GUI uses for making the connectiahéaemote node. Finally, the name is
a “friendly” identifier for the node that is used whenever tlogles of the ensemble are displayed in the
Maestro GUI.

Ensembile files can be edited using the Maestro GUI's EnseXfible which will be discussed in
more detail below. Generally these configurations woulg oeled to be modified once when setting up
a cluster. An administrator could then put the ensembleriike place that is convenient for accessing

by all users of the cluster.

www.manaraa.com

22

<?xm version="1.0"?>
<ensenbl e>
<cl uster_node cl ass=
<cl uster _node cl ass=
</ ensenbl e>

host name="node0" nane="Node 0" />
host name="nodel" nane="Node 1" />

nn

Figure 6.2 Example Ensemble File
Application Configuration

As discussed in the previous chapter, Stanza files conthinfatmation about how to launch an
application on a cluster. This is not limited to a static sebtions, but also includes a description
of application specific launching options. This allows tl@nga author to describe the application
in a dynamic way that allows future Maestro users to have morgrol over how the application is
launched.

Each stanza file is composed of stanza items that are usesditethe execution environment and
launch options. These options can be comprised of any ofdoll@ving stanza items: choice, group,
argument, environment variable, command, current worklingctory (CWD), reference, override, add
options, remove options, or environment list. Each of thegion types will be discussed in more
detail below.

Each stanza item can have a class attribute that deternfithesdption should be used on a given
cluster node. As described above each cluster node hassaattabute that is used in a matching
process that decides if the option should be used. The mgtihiairly simple. If all the class tokens
of a stanza item match up with class tokens of the ensemble, hben the stanza item is used with
that node. The more class tokens used on a stanza item, tleespexific the matching with ensemble
nodes will be. A stanza item with an empty class setting foezematches all ensemble nodes. For
example, Figure 6.3 shows an example of a stanza file thaifiggedifferent commands for nodes with
the “master” and “slave” classes.

Example 4.3. Application Stanza Using Classes for Mastdr3laves

www.manaraa.com

23

<?xm version="1.0"?>

<stanza>

<application name="nyapp" | abel ="My VR Application">
<command cl ass="master" name="naster_cnd">
${ APP_DI R}/ mast er App
</ command>
<command cl ass="sl ave" nanme="sl ave_cnd" >
${ APP_DI R}/ sl aveApp
</ command>

</ appl i cation>

</ stanza>

Figure 6.3 Example Stanza File

Command

The command option specifies the location of the applicatidme executed on each remote node.
This command can varied depending on the options’s clasbuaé. For example, a common cluster
configuration is to have one master node and many slave nodeyy two different command options
you could specify one command for the master node and antuther run on each of the slave nodes.

You could also specify a different command to be run on eaehmnaimg system in your cluster.

CWD

The current working directory option specifies the diregtibrat the application should be executed
from. It is not required that this be the directory that coméethe application since we can specify the
full path to the application in the command option. This optaddresses the needs of applications that
use relative paths to access their data. For example if aljés are loaded from a './data’ directory the

application must be executed from the parent directory.

Environment Variable

The environment variable option provides a method to apglgting to the execution environment
before starting the application. It is composed of a key eglair representing the setting name and

value. These settings are applied to each cluster nodeebekecuting the specified command. It is

www.manaraa.com

24

important to note that Maestro starts with a clean envirannbefore starting an application. So in
order to run an application all dependencies must be spediii@ PATH ot LD_LIBRARY_PATH

environment variable.

Environment List

The environment list option is a list of environment varizdl In some cases, an application may
use a large collection of environment variables, and angatidividual environment variable items in
the stanza can be quite tedious. Instead, an environmeiablalist can be used to capture multiple
environment variables in one place. Each environment bfria the list is made up of a (the name of
the environment variable) and zero or more values. If thezstauthor allows the user to change the
value of the environment variable, multi-valued variabléh be presented using a combo box or an

editable combo box when appropriate.

Argument

Command line arguments are the most common method to pravyide to an application. The
argument option provides a method of describing the comnlimachrguments that can be used when
launching. Maestro can then use this information at lauimk to ask the user if they want pass the
argument when launching, and what value to place with it. éx@mple, an argument option could
have the flag -i and value of data.txt. When launching, Maestll ask them if they want to use this

input file or specify another.

Choice

This option allows the stanza author to describe a choicethi®auser has when launching the
application. For example, Maestro could force the user wosh between a predefined list of input
data sets. Optionally the choice can be designated as beingly exclusive. When using a mutually
exclusive choice, the stanza author can choose to reprdsehoice with either radio buttons or a

combo box.

www.manaraa.com

25

Group

Creates a structural association of related items. Thisaefulito collect multiple settings behind a
common facade. For example if there are four input files tbateptually form two distinct units the
user could create two groups, “Input 1" and “Input 2.” If a @teis placed above these groups it forces

the user to choose between the two units.

Reference

A reference allows reuse of options in other stanzas. Theaated option can be refined by using
add, remove, and override operations. A reference idestifie XML element in the other stanza using
a syntax similar to XPath [4]. This allows global optionstttafine common settings or choices to be

reused.

Override

While referencing an option from another stanza file it candeful to change something about that
option. An override allows the user to change the attribated/or CDATA of the referenced option.
For example one application may accept configuration filels Wi’ flag while another may not require
a flag at all. If the later application wants to use the argunoeption from the first stanza file the user

can use an override to change the flag attribute to be empty.

Add Options

An add option allows the stanza author to place additioniéd ciptions under the referenced option
such as groups, choices, arguments, and environment leidlhis allows the author to use an option

described in a global stanza file but, for example add angtbssible value under a choice.

Remove Option

A remove operation deletes a child of the referenced stracitem. The reference identifier uses

the same path syntax as its parent reference.

www.manaraa.com

26

GUI Components

The Maestro GUI is composed of a main window with a set of vidwgfins. In this chapter we

will describe each of these view plug-ins in more detail.

Launch View

This view, Figure 6.4, provides the end user interface farot application execution. The inter-
face itself is built dynamically depending on the applicatstanza files described above. This means
that each application will have a unique interface thatvedlthe user to choose between different op-
tions specified in it's stanza file. This interface is compgbséa basic set of controls. The layout of
these controls will reflect the nesting and grouping of thdoms specified in the stanza editor. The

basic set of controls are the following:

 Text fields where users enter values, strings, paths, etbelcase of a file path, the stanza author
may choose to indicate that a file chooser dialog box can besspeShould that information be
present in the stanza, a button will be placed to the righheftext field for opening the file

chooser dialog.

» Radio button groups are used for controlling which mutuakclusive choice the user can make

among different cases.

» Pull-down menus are used for long lists of mutually exalegiptions in order to save space in
the GUI layout. The stanza author is responsible for makiegiecision about when a pull-down

menu is more appropriate than a group of radio buttons.

» Check boxes are used for groups of options that are not riyimeclusive.

When an application is launched, any output that it wouldmadly write to a console window is
streamed back to the Maestro GUI and displayed in the tabaedl pf log windows. Note that each
tab can be detached from the Maestro GUI and moved and residedendently. This allows the

output from multiple nodes to be seen simultaneously if sirdd.

www.manaraa.com

27

Maestro Client by Infiscape

Fie Tools View Help

é'_na@

'Launch View |
e o

Process View Application: |TApp
e

I Input Ft5e|fhome,"vrfdemosfzeus\fzeus.jconf | Browse...]
Desktop View Display: |Ffex System
6 Flex System
Wall Position
Stanza Editor @ Closed
& i
Head Tracking
Reboot View @ Tracking
ﬂ () Mo Head Tracking
Hand Device
Launch View
e 2
Samb () Wanda
() Elexol

Resource View

1t

13
Ensemble View

Help

T2 (T Y

Figure 6.4 Launch View

Reboot View

The Reboot Viewer, Figure 6.5, allows the user to rebootviddial nodes of the ensemble or all
the nodes of the ensemble. When possible, the Reboot Vidseabows the GUI user to specify the
target operating system when rebooting. This can be doralfoodes at once using the buttons at the
top of the view panel, or it can be done for individual nodes chiange the boot target for an individual
node, click on the table item that identifies the current @, apull-down menu will be activated that

allows the target OS to be selected.

www.manharaa.com

28

Maestro Client by Infiscape

He Took Mew Heb

R

% 'Reboot View

Process View Cluster 0S On Rebaot: @

.,..,! Node {Current 0OS) Operating System On Reboot Timeout
Des;lctop View A smalls | windows XP 20

6 & mayday | d* windows XF Professional x64 Edition 30
Stanza Editor
Reboot View

il £
F
i

Ensemble View

3 T

Figure 6.5 Reboot View

Process View

This view provides a list of all processes, Figure 6.6, aufiyerunning on the cluster as well as
a means to terminate individual processes. This becomgsuasful when a previously launched
application fails to terminate. When first loaded, the Psscéiewer displays nothing. To populate the
process list, click the Refresh button. Queries will be semiach of the ensemble nodes requesting the
current list of the running processes. To update the ligtk the Refresh button again. To kill a process,

select it from the list and click the terminate button. Youn¢arminate more than one processes by

selecting multiple list items.

www.manharaa.com

29

Desﬁop View
Editor

Stanza

Reboot View

Launch View

B
Ensemble View

‘- s [} -|_$

'Process View

Hode -~
smalls.infiscape.com

smalls.infiscape.com

smalls.infiscape.com
smalls.infiscape.com
smalls.infiscape.com

smalls.infiscape.com

smalls.infiscape.com
smalls.infiscape.com
smalls.infiscape.com
smalls.infiscape.com
smalls.infiscape.com
smalls.infiscape.com
smalls.infiscape.com
smalls.infiscape.com
smalls.infiscape.com

smalls.infiscape.com

smalls.infiscape.com

_smalls.infiscape.com

smalls.infiscape.com |

smalls.infiscape.com |

smalls.infiscape.com |

Command

| Systemn Idle Process
| System

SMSS.exe

| CSrss.exe
‘winlogon.exe
| services.exe

||sass.exe

svchost.exe

' svchost.exe

svchost.exe

EviEng.exe
S524EvMon.exe
WLKEEPER.exe
svchost.exe

| svchost.exe

spoolsv.exe
AppleMaobileDeviceServic...

| cvslock.exe

CVSService.exe

| ehrecvr.exe

| ehSched.exe

User
SYSTEM
SYSTEM
SYSTEM
SYSTEM

SYSTEM

SYSTEM
SYSTEM
SYSTEM

NETWOR...

SYSTEM
SYSTEM
SYSTEM

SYSTEM
NETWOR...
LOCAL 5...

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

308

364
564

812

1064
1500
1996
2020

700

FID

1972

280

352

612

860

1032

1204

1848

1968

680

Start Time

Sat Oct 13 14:58:37 2007

Sat Oct 13 14:58:39 2007

Sat Oct 13 14:58:41 2007

Sat Oct 13 14:58:41 2007

Sat Oct 13 14:58:41 2007
‘Sat Oct 13 14:58:42 2007

Sat Oct 13 14:58:43 2007

Sat Oct 13 14:58:43 2007

Sat Oct 13 14:58:43 2007
Sat Oct 13 14:58:45 2007

Sat Oct 13 14:58:45 2007

Sat Oct 13 14:58:45 2007

Sat Oct 13 14:58:45 2007
‘Sat Oct 13 14:58:45 2007

Sat Oct 13 14:58:45 2007

Sat Oct 13 14:58:45 2007
Sat Oct 13 14:58:45 2007

Sat Oct 13 14:58:45 2007

| Sat Oct 13 14:58:46 2007

| winlogor
' C:\wﬁ\l[

C:\WINE
' C:\WIND
| CrAWIND
' CH\WIND
| "C:\Proc
. ”C:\Pm-c;
. "C:\Proé
cowme

C:\WINE
' C:AWIND
. "Ci\Proc
| "C:\Proc
| "C:\Proc
. C:‘\\MNE

CoWINE |
[2]

Resource View

Figure 6.6 Process View

The Resource Viewer, Figure 6.7, provides the user with eesgmtation of the current resource

consumption on each node in the cluster. Currently, theuress tracked are CPU and memory usage,

and the graphs show this usage as a percentage of the tatabaWhen first loaded the view does

no show the state of any nodes. There are two methods to gaieslource consumption of a node.

First, by clicking on the refresh button each node will regts instantaneous usage. You can also

request to receive continuous updates for any set of clasides. In order to get continuous updates,

right-click on a node and select the desired update rate fr@rcontext menu. To stop the updates,

choose the Off item from the context menu.

www.manharaa.com

30

Maestro Client by Infiscape

File Tools Mew Help

wRE

% 'Resource View |

Process View | Hode CPU Usage Memory Usage I

o smalls

! mayda:
Desktop View : i

Stanza Editor

&

Reboot View

Launch View

Ensemble View

&l m >

Figure 6.7 Resource View

Desktop View

The Desktop Viewer is where users can control the state ekscsavers and power management
for each node in the cluster. At the top of the view there is lixghown menu that allows the user to
select either all nodes or an individual node. The user chtisa specific node to make changes for
or select all nodes to apply the changes to every node in tietet! There are three main functions
that this view can perform. First by changing the state of“®ereen Saver Enabled” checkbox the
user can disable screen savers. A running screen saver camtieated by clicking the Stop Screen
Saver button. This button also has the effect of unblankidgplay and waking up a sleeping display
if power management is still active. The user can changeutrermt background image by specifying

an image. The GUI will package the image up and send it to tmete cluster node to be used.

www.manharaa.com

31

Maestro Client by Infiscape

He Took View Help

Y

*3 'Desktop View |
Frocess View !smalls E|
"} Screen Saver Enabled
— - :
Desktop View

<

Stanza Editor

&l

Reboot View

e

Launch View

Background Image: |C:\WII\IDDWS\Weh\WaIlpaper‘\EIiss.bmp | m

&l T

Figure 6.8 Desktop View

Ensemble View

The Ensemble view presents the user information about therdly loaded ensemble. As you
can see in Figure 6.9, there is a list of all configured clustates. Using this view the user can add,
remove, or re-order the nodes in the ensemble. Also the asebowse information about each node
by selected the node from the list. It displays the computst hame, IP address, up time, and other

low-level details depending on the operating system baingon the node.

Stanza Editor

Since stanzas describe a hierarchy of options and envinohwagables, the idea behind this editor

is to represent that hierarchy in an understandable yet golweanner, Figure 6.10. A simple graph

www.manharaa.com

32

Maestro Client by Infiscape

Fle Tools VYew Help Ensemble
*] 'Ensemble View |
o
Process View g f:z:?i;say Node Settings
3 Name: |smalls |
= Hostname: |smalls |
Desktop View | |
Class:
6 1P Address: |10.23.101.6 |
i Current OS: |W|nduw5 XP |
m Other: Name Value ||
Reboot View Status oK
ﬁ Domain WORKGROUP
Launch View Name SMALLS
24.1% -t
26.1%
ol Caption | SMALLS
Risputes g Primary Owner :Aron Bierbaum A
o System Type X86-based PC i
Gy User Name SMALLS\aronb
Ensemble View -
Number of Proces... 2
Total Physical Me... | 2145771520
Up Time 0 days, 2:39:50
Description AT /AT COMPATIBLE —
Model | MPDG1
Manufacturer Dell Inc. E
resh - -
a s [_Refresh | [Add | [Remove |

Figure 6.9 Ensemble View

structure is used to achieve this. The parent/child retatigps are represented by arrows between
nodes of the graph. Each node of the graph represents a stpti@a, and the attributes of the option
are editable in the dockable panel at the bottom of the stadizar. This panel is dockable so that it
can be detached from the Maestro GUI and resized indepdpdenhake editing easier. To add any
one of these to the stanza being edited, click the desirddtrdtem and drag it to the stanza editor

canvas. At that point, connections can be made between thstnectural item and existing items.

www.manharaa.com

33

Maestro Client by Infiscape

Fie Tools View Help Stanza Editor

T T —

% 'Stanza Editor | |i Jchoce |
]

(" Environment)] . Env Variable

Desktop View | Var@ble
[Cm niGRE Config

Process View Application: |TApp

&

Stanza Editor

&

Reboot View

b

Launch View

2419
28.1%
&2

E

Resource View

Ensemble View

3 F—— : b
Stanza Option Editor
Environment Var List Editor | Basic Editor] Environ ment
s]] velues: (&) [=] Variable List
VPR_DEBLUG_ENABLE Nafie Value
VPR_DEBUG_NFY_LEVEL A list of environment variables. In some
V1 DEBUG_NFY LEVEL Debug On 1 cases, an application may use a large
F collection of environment variables, and
Debug Off o creating individual environment variable
items in the stanza can be guite tedious.
Instead, an environment variable list can
be used to capture multiple environment |«

Figure 6.10 Stanza Editor

www.manharaa.com

34

7. DISCUSSION

A few aspects of Maestro proved to be much more useful andiertftan we had originally thought.
There were also a few aspects of the research that proved verpechallenging and in some cases

nearly impossible. This chapter discusses this aspectsaetib in more detail.

Event System

At the beginning of this research designing a flexible and gréul event system was not a main
design goal. After many iterations of development the aurevent system has proven to be very
powerful and unique. The current design allows for a not @nblient server architecture, but also a
simple peer-to-peer network. Through a single method atcian send a dynamic event to any node

in the cluster.

Stanza Reference Option

We also found that our current implementation of optionmexfiees proved to be far more powerful
than we originally thought. The current system can not otimathe stanza author to bring in stanza
options from a common global set, but also modify these aptas they are imported. When deploying
a Windows® we also extended this to support command linenaegits specified to the Maestro GUI
client. This particular application took one command limguanent that specified an input file. By
passing override options to the Maestro client we could nfid@ssociations that would allow a user
to right click on an input file and select to launch the appiaraon the cluster with the given input file
as a command line argument. This use case provides evideaicklaestro makes running immersive

visualization applications on a cluster simple and usentily.

www.manaraa.com

35

Automated Logon

While developing Maestro we realized very quickly that tygpia user name and password every
time Maestro starts is counter productive. We tried addhmgsthis issue on Windows® by using the
Security Support Provider Interface (SSPI) to forward ergdhls between machines. Using SSPI we
were able to add support for Active Directory and NTLM auttiemtion methods. Although very
useful, these two authentication methods come with seiraitions.

The use of NTLM only supports single-hop credentials fodirag, meaning that a user can authen-
ticate with the Maestro service on a remote node, but caruoetsa network resources from that remote
node. Also, delegation of credentials via Active Directanthentication requires that each node of the
cluster be trusted for delegation. These security poligiast be set up by the domain administrator on
the domain controller.

This area of Maestro could still use a lot of research and Idpweent. We have still have a lot
to learn about Windows® credential forwarding. We wouldoali&e to add support for credential
forwarding on other platforms using a public key infrastrue (PKI) architecture similar to SSH. We

will discuss this in detail in Chapter 9.

Logon Desktop

When executing a graphical application on a remote nodegberaust have the correct credentials
to open a window on the current desktop. This has proven toiffieutt on all platforms because
the maestrod daemon must be executed with administratotsrand correctly keep track of system
resources. It becomes even more difficult when we add thdresgent that we want to execute an
application on top of the user logon screen. On Windows® wewet able to find a method to gain
the correct credentials to open a graphical window over #&r logon screen. This means that each
Windows® cluster node needs to have a user logged on befoestkbacan execute applications. In
order to work around this limitation the user can create asgaecount with minimal security rights
and set up Windows® to automatically logon this user eacl iins started. Once again this area of

Maestro requires more investigation in the future.

www.manaraa.com

36

8. CONCLUSIONS

Immersive visualization clusters have gained popularitgrahe past few years. Before the in-
troduction of Maestro, these clusters lacked an apprapriathod to launch immersive applications.
While there are existing remote execution tools, none additee specific needs of an immersive visu-
alization cluster. This chapter will discuss how Maestre hddresses each requirement presented in
Chapter 3.

Maestro was designed from the ground up with security in mirtee user is not allowed to connect
to a maestrod daemon without first authenticating theirtierT his authentication process attempts to
authenticate the user with a set of authentication plugB@sic user name and password authentication
is supported on all platforms. Maestro also attempts to tesgenitial forwarding to allow a user to use
their existing credentials on the client machine when coting to a cluster node. Maestro’s plug-in
architecture has proven to be more powerful and flexible #xésting tools. Also since this architecture
is extendable there are countless additions that can stithibde. Some of these potential extensions
will be discussed in Chapter 9.

Most existing remote execution tools are tied to a specifarating system. From the beginning of
this research Maestro was designed to be completely craenoh. Currently Maestro has been tested
and known to work on Microsoft Windows®, Linux, Mac OS X, anctEBSD. Although it has only
been tested on these four platforms, it should also work griiiX based operating system.

Immersive applications by definition always render graphica window on each cluster node. In
order to do this the executed application requires spe@ahjssions to open an interactive window
on the current desktop. Maestro transparently addressesetjuirement on all supported operating
systems by granting each remote process the correct adghss There is currently no other remote

execution tool that handles this requirement without uservention.

www.manaraa.com

37

Each application that we run on a cluster will interact difetly with its execution environment.
A useful remote execution tool should expect this and allosvitser to have complete control over the
execution environment. Maestro accomplishes this by afiguthe user to specify everything including
the command, current working directory, environment Malga, and command line arguments. This is
far better than existing tools that only let the user speaibpmmand to execute.

The process of launching an immersive application is raseltatic operation. Instead the user
launching the application usually needs to specify a setairmand line flags that specify various
input files and options. While launching an immersive cluafgplication the user should be presented
with these options rather than having hard coded defaulsestto’s solution to this problem is very
unique. It allows the application developer to describeapplication launching environment and all
options that the user can specify while launching the apfiia. Maestro then builds a dynamic user
interface that presents the user with these options bedoreching the application.

Since an immersive visualization application is alwaypldiging graphics it is very important that
screen savers are not activated while running the appicatMaestro addresses this requirement by
giving the user a unified view of screen saver and power managesettings on all nodes in the cluster.

The research presented in this paper explains the uniquids redean immersive application, de-
scribes how existing tools do not address these needs, aadrjis Maestro, our solution to this prob-
lem. We believe that Maestro successfully addresses eattte afoals listed in Chapter 3. Maestro
has evolved over time into a tool that is deployed on numetarge clusters and has proven to be

indispensable.

www.manaraa.com

38

9. FUTURE WORK

Immersive visualization is an evolving field, and similafjaestro is an evolving project. Based on
user feedback and project goals, there are a few improventieait have been identified. This chapter
will address each one of these individually.

The user authentication support in Maestro was designea textended through authentication
plug-ins. Currently there is support for user name and passauthentication on all platforms. There
is also limited support for credential forwarding on Winds®vusing SSPI. We would like to create an
additional plug-in that uses a PKI infrastructure simia&SH. This would allow each cluster node to
have a list of trusted public keys. The Maestro client cohlhtuse the user’s private key to prove their
identity. This could build on top of existing tools like salyent to gain access to a user’s private key
list. Using this method we could eliminate the need for a wgdype their user name and password
each time they start the Maestro client GUI.

Administration of a large cluster is a difficult and tediousgess. Maestro could be extended to
allow more complete remote administration. This couldudel creating an interface to existing well
tested tools. For example, Maestro could provide a methadaofing a Virtual Network Computing
(VNC) [18] client connection to any node in the cluster. Thisuld allow the user to control the entire
remote desktop. Maestro could also interface with existilugter monitoring tools such as Ganglia
[17] to provide the user with a better with of cluster res@s.c

This chapter has only discussed a few potential extensiSirsce Maestro was developed to be
highly extendable using a plug-in architecture, there auntless plug-ins that could be added in the
future. It is our goal for Maestro to build a user communitgtticontinues actively developing these

plug-ins in an open and cooperative environment.

www.manaraa.com

39

BIBLIOGRAPHY

[1] “Pyqt website.” [Online]. Available: http://www.rivdeankcomputing.co.uk/pyqt/

[2] “Pyro: Python remote objects website.” [Online]. Awile: http://pyro.sourceforge.net/

[3] “Qt website.” [Online]. Available: http://trolliteclcom/products/qt

[4] “Xml path language (xpath),” November 1999. [Onlinejvaable: http://www.w3.0rg/TR/xpath

[5] J. Allard, V. Gouranton, E. Melin, and B. Raffin, “Pardifeng Pre-rendering Computations on
a Net Juggler PC Cluster,” ilPT (Intl. Workshop on Immersive Projection) 2002 Proceedings,
Orlando, Florida, United States, March 2002.

[6] J. Dickerson, Y. Yang, K. Blom, A. Reinot, J.Lie, C. Crideira, and E. Wurtele, “Using virtual
reality to understand complex metabolic networks,Pimceedings of the Atlantic Symposium on
Computational Biology and Genomic Information Systems and Technology, September 2003, pp.

950-953.

[7] Z. Fan, M. Oliveira, C. Ma, and A. Kaufman, “A sketch-bdseterface for collaborative design
sketch-based interfaces and modeling,Piroceedings Eurographics Symposium 2004, vol. VI,
August 30-31 2004, pp. 1-5.

[8] A. Fettig, Twisted Network Programming Essentials. O’Reilly Media, 2005.

[9] W. Gallus, C. Cervato, C. Cruz-Neira, G. Faidley, and ReH “A virtual tornadic thunderstorm
enabling students to construct knowledge about storm digsaifmrough data collection and anal-

ysis,” in 13th Symposium on Education, January 11-15 2004.

www.manaraa.com

40

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissideesign Patterns. Elements of Reusable
Object-Oriented Software, ser. Addison-Wesley Professional Computing Series. Newk,Y
NY: Addison-Wesley Publishing Company, 1995.

[11] A. Hopkins, “Remote++: A script for automatic remotestlibution of programs on windows

computers,” inProceedings of the ACM Southeast Regional Conference, 2003.

[12] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, PKidchner, and J. T. Klosowski,
“Chromium: A stream processing framework for interactivaghics on clusters,” idCM S G-

GRAPH 2002 Sketches and Applications. Texas, United States: ACM Press, July 2002.

[13] J. Jacobson and M. Lewis, “Game engine virtual realitthwaveut,”|EEE Computer, vol. 38,

no. 4, pp. 79-82, 2005.

[14] B. Karthikeyan, K. M. Bryden, and D. A. Ashlock, “Visuaing information flow in evolving
graph-based population,” iRroceedings of International Conference in Smart Engineering De-

sign (ANNIE-2003), St. Louis, United States, November 2003.

[15] C. Kim and J. Vance, “Collision detection and part iatgtion modeling to facilitate immersive
virtual assembly methodsASME Journal of Computing and Information Sciences in Engineer-

ing, vol. 4, no. 1, pp. 83-90, June 2004.
[16] C. Martin, “Parallel launcher for cluster of pc,” 2001.

[17] M. L. Massie, B. N. Chun, and D. E. Culler, “The gangliastdibuted monitoring system: Design,

implementation and experience.”

[18] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and Appler, “Virtual network computing,”
|EEE Internet Computing, vol. 2, no. 1, pp. 33—-38, 1998.

[19] V. Samar and R. Schemers, “Unified login pluggable antibation modules (pam),”
RFC 86 (Informational), Open Software Foundation, Octoi®85. [Online]. Available:

http://mww.kernel.org/pub/linux/libs/pam/pre/do@®6.0.txt.gz

www.manaraa.com

41

[20] O. G. Staadt, J. Walker, C. Nuber, and B. Hamann, “A Syraad Performance Analysis of
Software Platforms for Interactive Cluster-Based Multi&en Rendering,” ifProceedings of the
Workshop on Virtual Environments 2003. Zurich, Switzerland: ACM Press, 2003, pp. 261-270.

[21] R. Stuart,The Design of Virtual Environments. McGraw-Hill, 1996.

[22] C. Szyperski, D. Gruntz, and S. Mur&pmponent Software: Beyond Object Oriented Program-
ming, 2nd ed., ser. Component Software Series. New York, NY: saltiWesley Publishing

Company, 2002.

[23] T. Wasfy and A. Noor, “Visualization of CFD results in fmersive Virtual Environments,Ad-

vances in Engineering Software, vol. 32, pp. 717-730, 2001.

www.manharaa.com

	2007
	Maestro: a remote execution tool for visualization clusters
	Aron Lee Bierbaum
	Recommended Citation

	tmp.1429222368.pdf.qh8it

